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Abstract
We study the conformal field theories corresponding to current superalgebras
osp(2|2)

(1)
k and osp(2|2)

(2)
k . We construct the free field realizations, screen

currents and primary fields of these current superalgebras at general level k.
All the results for osp(2|2)

(2)
k are new, and the results for the primary fields of

osp(2|2)
(1)
k also seem to be new. Our results are expected to be useful in the

supersymmetric approach to Gaussian disordered systems such as the random
bond Ising model and the Dirac model.

PACS numbers: 11.25.Hf, 02.20.−a, 11.30.Pb, 05.50.+q

1. Introduction

In recent years, disordered systems have attracted much attention in both theoretical
and condensed matter physics communities [1–8]. In particular, the application of the
supersymmetric method [9] to Gaussian disordered systems has revealed that the relevant
algebras are current superalgebras with zero superdimension [10–14]. Such superalgebras
have equal number of bosonic and fermionic generators. This ensures that the Virasoro algebra
constructed from the super currents has vanishing central charge: a necessary condition for
the description of disordered systems. The conformal field theory derived from such a current
superalgebra potentially contains primary fields with negative conformal dimensions so that
the theory is non-unitary. The non-unitarity makes the conformal field theory non-trivial even
though it has a vanishing central charge.

Our aim in this paper is to provide some algebraic backgrounds which are expected to be
useful in the study of the random bond Ising model and the two-species Dirac model with a
random sl(2)-gauge potential. Namely, we investigate the conformal field theories based on
the current superalgebras osp(2|2)(1) and osp(2|2)(2) at general level k. We derive the free field
representations and screen currents of these two algebras. Primary fields corresponding to
both typical and atypical representations are constructed explicitly and their operator product
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expansions (OPEs) with currents are presented. In the case of osp(2|2)(1), there exists an
infinite family of negative dimensional primary operators, and for the case of osp(2|2)(2) all
primary fields have zero conformal dimensions. All results for osp(2|2)

(2)
k are new, and the

explicit results for the primary fields of osp(2|2)
(1)
k also seem to be new. As for the free

field realizations and screen currents of osp(2|2)
(1)
k , similar results have also been obtained

in [15–18], though based on different approaches and conventions. We used a slightly more
straightforward approach by means of super coherent states. The free field realizations of
the currents are needed in order to find all representations (i.e. primary fields) of the current
superalgebras.

This paper is organized as follows. In section 2, we set our convention. As is well
known, free field realization is a common approach used in both conformal field theories and
representation theory of current algebras [19–23]. So in section 3, we describe our construction
of the free field representations and screen currents. In section 4, we construct the primary
fields corresponding to both typical and atypical representations of the current superalgebras.
We conclude in section 5.

2. Notation

It is well known that unlike a purely bosonic algebra a superalgebra admits different Weyl
inequivalent choices of simple root systems, which correspond to inequivalent Dynkin
diagrams. In the case of osp(2|2), one has two choices of simple roots which are unrelated
by Weyl transformations: a system of fermionic and bosonic simple roots (i.e. the so-called
standard basis) or a purely fermionic system of simple roots (that is the so-called non-standard
basis). So it is useful to obtain results in the two different bases for different physical
applications. Moreover, it seems that only in the non-standard basis could osp(2|2) be twisted
to give osp(2|2)(2).

2.1. osp(2|2)(1) in the standard basis

Let E (F) and e (f ) be the generators corresponding to the even and odd simple roots of
osp(2|2) in the standard (distinguished) basis, respectively. Let ē, f̄ be the odd non-simple
generators. They satisfy the following (anti-)commutation relations:

[E,F ] = H [H,E] = 2E [H,F ] = −2F

{e, f } = − 1
2 (H − H ′) [H, e] = −e [H, f ] = f

[H ′, e] = −e [H ′, f ] = f

[E, e] = ē [F, f ] = f̄

{ē, f̄ } = − 1
2 (H + H ′)

{e, f̄ } = −F {ē, f } = E

[E, f̄ ] = f [F, ē] = e

[H, ē] = ē [H, f̄ ] = −f̄

[H ′, ē] = −ē [H ′, f̄ ] = f̄ .

(2.1)

All other (anti-)commutators are zero. The quadratic Casimir is given by

C2 = 1
2 (H(H + 2) − H ′(H ′ + 2)) + 2f e − 2f̄ ē + 2FE. (2.2)

This quadratic Casimir is useful in the following to construct the energy–momentum tensor.
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The current superalgebra osp(2|2)
(1)
k in the standard basis can be written as

JA(z)JB(w) = k
str(AB)

(z − w)2
+ f C

AB

JC(w)

(z − w)
(2.3)

where f C
AB are structure constants related to generators A,B and C, which can be read off

from the above (anti-)commutation relations.

2.2. osp(2|2)(1) in the non-standard basis

In the non-standard basis, simple roots of osp(2|2) are all fermionic. Let e, f, ē, f̄ be
the generators corresponding such fermionic simple roots, and let E,F be the non-simple
generators. They obey the (anti-)commutation relations:

{e, f } = − 1
2 (H − H ′) [H, e] = e [H, f ] = −f

[H ′, e] = e [H ′, f ] = −f

[H, ē] = ē [H, f̄ ] = −f̄

[H ′, ē] = −ē [H ′, f̄ ] = f̄

{ē, f̄ } = − 1
2 (H + H ′)

{e, ē} = E {f̄ , f } = −F

[E,F ] = H [H,E] = 2E [H,F ] = −2F

[E, f ] = ē [F, e] = f̄

[E, f̄ ] = e [F, ē] = f.

(2.4)

All other (anti-)commutators are zero, and the quadratic Casimir is

C2 = 1
2 (H 2 − H ′2) − 2f e − 2f̄ ē + 2FE. (2.5)

The current superalgebra osp(2|2)
(1)
k in the non-standard basis has the similar form as (2.3)

except that f C
AB are now derived from (2.4).

2.3. Twisted superalgebra osp(2|2)(2)

Let us start with some basics of twisted affine algebras [30]. Let g be a simple finite-
dimensional Lie algebra and σ be an automorphism of g satisfying σ r = 1 for a positive
integer r, then g can be decomposed into the form: g = ⊕r−1

j=0gj , where gj is the eigenspace
of σ with eigenvalue e2jπ i/r , and [gi, gj ] ⊂ g(i+j) mod r , then r is called the order of the
automorphism.

Here we only consider the simplest twisted affine superalgebra osp(2|2)(2) so that
g = osp(2|2) and r = 2. We can write

osp(2|2) = g0 ⊕ g1 (2.6)

where g0 = osp(1|2) is a fixed point sub-superalgebra under the automorphism, while g1 is a
three-dimensional representation of g0, g0 and g1 satisfy [gi, gj ] ⊂ g(i+j) mod 2. We denote the
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basis of g0 by e, f,E, F,H and the basis for g1 by e′, f,H ′. The commutation relations of
osp(2|2) in this basis are

[E,F ] = H [H,E] = 2E [H,F ] = −2F

{e, e} = 2E {f, f } = −2F {e, f } = H

[E, f ] = −e [F, e] = −f

[H, e] = e [H, f ] = −f

{e′, e′} = −2E {f ′, f ′} = 2F {e′, f ′} = H

[H ′, e′] = −e [H ′, f ′] = −f

{e′, f } = H ′ {f ′, e} = H ′

[H, e′] = e′ [H, f ′] = −f ′

[E, f ′] = e′ [F, e′] = f ′

[H ′, e] = −e′ [H ′, f ] = f ′.

(2.7)

All other (anti-)commutators are zero, and the quadratic Casimir is

C2 = 1
2 (H 2 − H ′2) + 2f e + 2f ′e′ + 2FE. (2.8)

The current superalgebra osp(2|2)
(2)
k reads

JA(z)JB(w) = k
str(AB)

(z − w)2
+ f C

AB

JC(w)

z − w
(2.9)

where f C
AB are read off from (2.7).

3. Wakimoto realizations and screen currents

In this section, we examine the free field realizations of osp(2|2)
(1)
k and osp(2|2)

(2)
k and their

screen currents. The results for osp(2|2)
(2)
k are new. For osp(2|2)

(1)
k similar results have also

been obtained in [15–18] using different approaches. Let us remark that free field realizations
of affine osp(2|2) at k = 1 have also been constructed in [24, 25]. (Note: Ludwig used a
different convention for osp(2|2)

(1)
k in [25]; k = −2 in his convention is equivalent to k = 1

in our convention.)
To obtain free field realizations we first construct Fock space representations of osp(2|2)

corresponding to the bases given in section 2. Let Eα denote the raising generators of osp(2|2).
A highest weight state |P,Q,P 〉 of osp(2|2) is defined by

Eα|P,Q,P 〉 = 0 H |P,Q,P 〉 = P |P,Q,P 〉 H ′|P,Q,P 〉 = Q|P,Q,P 〉. (3.1)

3.1. osp(2|2)
(1)
k in the standard basis

Let Ast = xF + θf + θ̄ f̄ be an operator in the standard basis of osp(2|2), where x is bosonic
coordinate, θ and θ̄ are fermionic coordinates. The action of eAst on the highest weight state
|p, q, p〉 generates a coherent state of osp(2|2). Write

bg eAst |p, q, p〉 = Dg eAst |p, q, p〉 fg eAst |p, q, p〉 = dg eAst |p, q, p〉 (3.2)

for bosonic generators bg and fermionic generators fg of osp(2|2). Here Dg, dg are the
corresponding differential operators. Using the Baker–Campbell–Hausdorff (BCH) formula
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and osp(2|2) commutation relations, we obtain

df̄ = ∂θ̄

df = ∂θ + 1
2x∂θ̄

DF = ∂x − 1
2θ∂θ̄

DH = p + 2x∂x − θ∂θ + θ̄∂θ̄

DH ′ = q − θ∂θ − θ̄∂θ̄

de = − 1
2 (p − q)θ − θ̄∂x − 1

2θx∂x − 1
2θ θ̄∂θ̄

DE = −px − θ̄∂θ − x2∂x − 1
2xθ̄∂θ̄ + 1

2xθ∂θ − 1
4x2θ∂θ̄

dē = − 1
2 (p + q)θ̄ − 1

4 (3p − q)xθ − θ̄x∂x + θ̄ θ∂θ − 1
2θx2∂x.

(3.3)

It is straightforward to prove that the above differential operators satisfy the algebraic relations
of osp(2|2) in the standard basis.

We now use the differential operator representation (3.3) to find the Wakimoto realization
of osp(2|2)

(1)
k in terms of one bosonic β–γ pair, two fermionic b–c type systems and two free

scalar fields. These free fields have the following OPEs:

β(z)γ (w) = −γ (z)β(w) = − 1

z − w
ψ(z)ψ †(w) = ψ †(z)ψ(w) = − 1

z − w

ψ̄(z)ψ̄ †(w) = ψ̄ †(z)ψ̄(w) = − 1

z − w
φ(z)φ(w) = − ln(z − w) = φ′(z)φ′(w).

(3.4)

The free field realization of osp(2|2)(1) in the standard basis is obtained by the following
substitution:

df (f̄ ) → je(ē)(z) de(ē) → jf (f̄ )(z) DF → JE(z)

DE → JF (z) DH(H ′) → JH(H ′)(z) ∂x → β(z)

x → γ (z) θ(θ̄) → ψ(z)(ψ̄(z))

∂θ(θ̄) → ψ †(z)(ψ̄ †(z)) p → iα+∂φ(z) q → iα+∂φ′(z)

(3.5)

in the differential operator realization (3.3) and a subsequent addition of anomalous terms
linear in ∂ψ(z), ∂γ (z) or ∂ψ̄(z) in currents jf (f̄ )(z) and JF (z). The result is

jē(z) = ψ̄ †(z)

je(z) = −ψ †(z) − 1
2γ (z)ψ̄ †(z)

JE(z) = β(z) − 1
2ψ(z)ψ̄ †(z)

JH (z) = iα+∂φ(z) + 2β(z)γ (z) − ψ(z)ψ †(z) + ψ̄(z)ψ̄†(z)

JH ′(z) = α+∂φ′(z) − ψ(z)ψ †(z) − ψ̄(z)ψ̄†(z)

jf (z) = − 1
2α+(i∂φ(z) − ∂φ′(z))ψ(z) − β(z)ψ̄(z) − 1

2β(z)γ (z)ψ(z)

− 1
2 ψ̄(z)ψ̄†(z)ψ(z) +

(
k + 1

2

)
∂ψ(z)

JF (z) = −iα+∂φ(z)γ (z) − β(z)γ 2(z) − ψ̄(z)ψ †(z) + 1
2γ (z)(ψ(z)ψ †(z) + ψ̄(z)ψ̄†(z))

− 1
4γ 2(z)ψ(z)ψ̄†(z) − (

k − 1
2

)
∂γ (z)

jf̄ (z) = 1
2α+(i∂φ(z) + ∂φ′(z))ψ̄(z) + 1

4α+(3i∂φ(z) − ∂φ′(z))γ (z)ψ(z)

+ β(z)γ (z)ψ̄(z) − ψ(z)ψ †(z)ψ̄(z) + 1
2β(z)γ 2(z)ψ(z)

+ k∂ψ̄(z) + 1
2 (k − 1)ψ(z)∂γ (z) − 1

2 (k + 1)γ (z)∂ψ(z)

(3.6)

where α+ = √
2k + 2, and normal ordering is implied in the expressions.
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The energy–momentum tensor is obtained by the Sugawara construction. Due to
singularities which arise when multiplying currents at the same point we need to consider
a regularization to remove such divergences. We use the usual point-splitting regularization
where singular parts appearing in the OPEs of the currents are subtracted. This is equivalent
to defining the normal ordered product of two fields A(z) and B(z) by

: AB : (z) ≡
∮

w

dz

2π i

A(z)B(w)

z − w
. (3.7)

In the present case, the Sugawara energy–momentum tensor is given by

Tst (z) = 1

2(k + 1)
:

(
1

2
JH (z)JH (z) − 1

2
JH ′(z)JH ′(z) + JE(z)JF (z) + JF (z)JE(z)

− je(z)jf (z) + jf (z)je(z) + jē(z)jf̄ (z) − jf̄ (z)jē(z)

)
: . (3.8)

By means of the free field representation of the currents, we get

Tst (z) = −β(z)∂γ (z) + ψ †(z)∂ψ(z) + ψ̄ †(z)∂ψ̄(z)

+
1

2
((i∂φ(z))2 + (∂φ′(z))2) − 1

α+
(i∂2φ(z) − ∂2φ′(z)). (3.9)

The energy–momentum tensor satisfies the OPE,

Tst (z)Tst (w) = 2Tst (w)

(z − w)2
+

∂Tst (w)

z − w
. (3.10)

So the Virasoro central charge of the theory is zero.
An important object in the free field approach is screening current. Screening currents are

primary fields with conformal dimension 1, and their integrations give the screening charges.
They commute with the affine currents up to a total derivative. These properties ensure
that screening charges may be inserted into correlators while the conformal or affine ward
identities remain intact. For the present case, the screening currents of first kind are found
to be

ss,1(z) =
(

ψ †(z) − 1

2
γ (z)ψ̄ †(z)

)
exp

{
1

α+
(iφ(z) − φ′(z))

}

ss,2(z) =
(

β(z) +
1

2
ψ(z)ψ̄†(z)

)
exp

{
− 2

α+
iφ(z)

} (3.11)

and the screening current of second kind is

sII (z) =
(

β−k−1(z) − k + 1

2
β−k−2(z)ψ(z)ψ̄†(z)

)
exp{α+iφ(z)}. (3.12)

Similar results to (3.6), (3.11), (3.12) have also been obtained in [17, 18] using different
approaches.

3.2. osp(2|2)
(1)
k in the non-standard basis

In the non-standard basis, the action of the operator eAnst with Anst = xF + θf + θ̄ f̄ on
the highest weight state |p, q, p〉 generates a coherent state of osp(2|2), where x is bosonic
coordinate, θ and θ̄ are fermionic coordinates. Denote the action of osp(2|2) generators on
this coherent state by

bg eAnst |p, q, p〉 = Dg eAnst |p, q, p〉 fg eAnst |p, q, p〉 = dg eAnst |p, q, p〉 (3.13)
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where bg, fg are the bosonic and fermionic generators of osp(2|2), respectively, and Dg, dg

are the corresponding differential operators. After some algebraic manipulations, we find

df̄ = ∂θ − 1
2 θ̄∂x

df = ∂θ̄ − 1
2θ∂x

DF = ∂x

DH = p + 2x∂x + θ∂θ + θ̄∂θ̄

DH ′ = q + θ∂θ − θ̄∂θ̄

de = − 1
2 (p − q)θ + x∂θ̄ − 1

2θx∂x − 1
2θ θ̄∂θ̄

dē = − 1
2 (p + q)θ̄ + x∂θ − 1

2 θ̄ θ∂θ − 1
2 θ̄x∂x

DE = −px + 1
2qθθ̄ − x2∂x − xθ̄∂θ̄ − xθ∂θ .

(3.14)

It is easy to show that the above differential operators give a realization of osp(2|2) in the
non-standard basis.

With the help of the differential operator representation (3.14) and by a substitution
similar to (3.5) and an addition of suitable anomalous terms, we find the free field realization
of osp(2|2)

(1)
k in the non-standard basis

JE(z) = β(z)

je(z) = ψ †(z) − 1
2β(z)ψ̄(z)

jē(z) = ψ̄ †(z) − 1
2β(z)ψ(z)

JH (z) = iα+∂φ(z) + 2β(z)γ (z) + ψ(z)ψ †(z) + ψ̄(z)ψ̄†(z)

JH ′(z) = α+∂φ′(z) + ψ(z)ψ †(z) − ψ̄(z)ψ̄†(z)

jf (z) = 1
2α+(i∂φ(z) − ∂φ′(z))ψ(z) − γ (z)ψ̄†(z) + 1

2β(z)γ (z)ψ(z)
(3.15)

+ 1
2ψ(z)ψ̄(z)ψ̄ †(z) +

(
k + 1

2

)
∂ψ(z)

jf̄ (z) = 1
2α+(i∂φ(z) + ∂φ′(z))ψ̄(z) − γ (z)ψ †(z) + 1

2β(z)γ (z)ψ̄(z)

+ 1
2 ψ̄(z)ψ(z)ψ †(z) +

(
k + 1

2

)
∂ψ̄(z)

jF (z) = −α+i∂φ(z)γ (z) + 1
2α+∂φ′(z)ψ(z)ψ̄(z) − β(z)γ 2(z)

+ γ (z)(ψ(z)ψ †(z) + ψ̄(z)ψ̄†(z)) − k∂γ (z)

+ 1
2 (k + 1)(ψ̄(z)∂ψ(z) + ψ(z)∂ψ̄(z)).

The energy–momentum tensor in the non-standard basis is given by

Tnst (z) = −β(z)∂γ (z) + ψ †(z)∂ψ(z) + ψ̄ †(z)∂ψ̄(z) + 1
2 ((i∂φ(z))2 − (∂φ′(z))2). (3.16)

This energy–momentum tensor has no terms with background charges, and obeys the OPE

Tnst (z)Tnst (w) = 2Tnst (w)

(z − w)2
+

∂Tnst (w)

z − w
. (3.17)

The screening currents in the non-standard basis are

sn,1(z) =
(

ψ †(z) +
1

2
β(z)ψ̄(z)

)
exp

{
− 1

α+
(iφ(z) − φ′(z))

}

sn,2(z) =
(

ψ̄ †(z) +
1

2
β(z)ψ(z)

)
exp

{
− 1

α+
(iφ(z) + φ′(z))

}
.

(3.18)

Similar results as (3.15), (3.18) have also been given in [16, 18], though based on different
approaches and conventions.
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3.3. osp(2|2)
(2)
k

Here osp(2|2) is decomposed into g0 ⊕ g1. The action of eAt with At = xF + θf + θ ′f ′ on
the highest weight state |p, q ′, p〉 generates a coherent state of osp(2|2) in the basis given by
(2.7), where x is bosonic coordinate, θ and θ ′ are fermionic coordinates. Again write

bg eAt |p, q ′, p〉 = Dg eAt |p, q ′, p〉 fg eAt |p, q ′, p〉 = dg eAt |p, q ′, p〉 (3.19)

where bg, fg stand for the bosonic and fermionic generators of osp(2|2) in the basis (2.7),
and Dg, dg are the corresponding differential operators. After some algebraic computations
we get

DF = ∂x

df = ∂θ − θ∂x

df ′ = ∂θ ′ + θ ′∂x

DH = p + 2x∂x + θ∂θ + θ ′∂θ ′

DH ′ = q ′ − θ∂θ ′ − θ ′∂θ

de = pθ + q ′θ ′ − x∂θ + θx∂x + θθ ′∂θ ′

DE = −px + q ′θθ ′ − x2∂x − xθ∂θ − xθ ′∂θ ′

de′ = pθ ′ + q ′θ + x∂θ ′ + θ ′x∂x + θ ′θ∂θ .

(3.20)

Indeed these differential operators satisfy the algebraic relations (2.7).
By means of the differential operator realization (3.20) and a substitution similar to (3.5)

and an addition of suitable anomalous terms, we find the free field realization of osp(2|2)
(2)
k ,

JE(z) = β(z)

je(z) = ψ †(z) − β(z)ψ(z)

je′(z) = ψ ′†(z) + β(z)ψ ′(z)
JH (z) = iα+∂φ(z) + 2β(z)γ (z) + ψ(z)ψ †(z) + ψ ′(z)ψ ′†(z)
JH ′(z) = α+∂φ′(z) − ψ(z)ψ ′†(z) − ψ ′(z)ψ †(z)

jf (z) = −α+(i∂φ(z)ψ(z) + ∂φ′(z)ψ ′(z)) + γ (z)ψ †(z) − β(z)γ (z)ψ(z)
(3.21)

−ψ(z)ψ ′(z)ψ ′†(z) − (2k + 1)∂ψ(z)

jf ′(z) = −α+(i∂φ(z)ψ ′(z) + ∂φ′(z)ψ(z)) − γ (z)ψ ′†(z) − β(z)γ (z)ψ ′(z)
−ψ ′(z)ψ(z)ψ †(z) − (2k + 1)∂ψ ′(z)

JF (z) = −α+(i∂φ(z)γ (z) − ∂φ′(z)ψ(z)ψ ′(z)) − β(z)γ 2(z)

− γ (z)(ψ(z)ψ †(z) + ψ ′(z)ψ ′†(z)) − k∂γ (z)

+ (k + 1)(ψ(z)∂ψ(z) − ψ ′(z)∂ψ ′(z))

where ψ ′(z) and ψ ′†(z) are free fermionic fields having the OPEs

ψ ′(z)ψ ′†(w) = ψ ′†(z)ψ ′(w) = − 1

z − w
. (3.22)

It is straightforward to check that the above currents satisfy the OPEs of osp(2|2)
(2)
k given in

last section.
The energy–momentum tensor is

Tt (z) = −β(z)∂γ (z) + ψ †(z)∂ψ(z) + ψ ′†(z)∂ψ ′(z) + 1
2 ((i∂φ(z))2 − (∂φ′(z))2). (3.23)
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There are no background charges in the expression of the energy–momentum tensor, and its
OPE reads

Tt (z)Tt (w) = 2Tt (w)

(z − w)2
+

∂Tt (w)

z − w
. (3.24)

So we are dealing with a conformal field theory with zero Virasoro central charge.
It is first pointed out in [31] that in twisted case, the usual method to derive the screening

currents is inappropriate. The screening currents should be twisted. The twisted screening
currents for osp(2|2)(2) are found to be

st,+(z) = (ψ †(z) + ψ ′†(z) + β(z)ψ(z) − β(z)ψ ′(z)) exp

{
− 1

α+
(iφ(z) + φ′(z))

}

= (ψ †(z) + ψ ′†(z) + β(z)ψ(z) − β(z)ψ ′(z))s̃t,+(z)

st,−(z) = (ψ †(z) − ψ ′†(z) + β(z)ψ(z) + β(z)ψ ′(z)) exp

{
− 1

α+
(iφ(z) − φ′(z))

}

= (ψ †(z) − ψ ′†(z) + β(z)ψ(z) + β(z)ψ ′(z))s̃t,−(z).

(3.25)

These screening currents satisfy the OPEs,

je(z)st,±(w) = JE(z)st,±(w)=jē(z)st,±(w) = JH (z)st,±(w)=JH ′(z)st,±(w) = · · · (3.26)

and

jf (z)st,±(w) = −∂w

(
α2

+

z − w
s̃t,±(w)

)

jf ′st,±(w) = −∂w

(
α2

+

z − w
s̃t,±(w)

)

JF (z)st,+(w) = ∂w

(
α2

+

z − w
(ψ(w) − ψ ′(w))s̃t,+(w)

)

JF (z)st,−(w) = ∂w

(
α2

+

z − w
(ψ(w) + ψ ′(w))s̃t,−(w)

)
.

(3.27)

There does not seem to have screening current of the second kind for osp(2|2)
(2)
k .

4. Primary fields

Primary fields are fundamental objects in conformal field theories. A primary field 
 has the
following OPE with the energy–momentum tensor,

T (z)
(w) = �


(z − w)2

(w) +

∂w
(w)

z − w
+ · · · (4.1)

where the �
 is the conformal dimension of 
. Moreover, the OPEs of 
 with the affine
currents do not contain poles higher than first order. A special kind of the primary fields is
highest weight state.

Let us remark that certain representations were investigated for osp(2|2) in [26, 27] and
for osp(2|2)(1) in [28, 29]. Here we are concerned with primary fields, which requires the
construction of all representations.
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4.1. osp(2|2)(1) primary fields in the standard basis

It is easy to see that the highest weight state of the algebra is

Vp,q(z) = exp

{
2

α+
(p iφ(z) − qφ′(z))

}
(4.2)

where p, q are given complex numbers labelling the representation. The conformal dimension
of the field is

�p,q = p(p + 1) − q(q + 1)

k + 1
. (4.3)

If q �= p,−p − 1, then �p,q �= 0 and the corresponding representations are typical. When
q = p,−p − 1, we have �p,q = 0 and atypical representations arise. In order for the
representation to be finite dimensional, we find that p must be an integer or half-integer. The
full bases of the representation labelled by p, q are

Sm
p,q(z) = (−γ (z))p−mVp,q(z) m = p, p − 1, . . . ,−(p − 1),−p

sn
p,q(z) = (−γ (z))(p−3/2)−n

(
ψ̄(z) + 1

2γ (z)ψ(z)
)
Vp,q(z)

n = (p − 3/2), . . . ,−(p + 1/2) p � 1/2

s̃ l
p,q(z) = (p − q)(−γ (z))(p−3/2)−l

(
ψ̄(z) − 1

2γ (z)ψ(z)
)
Vp,q(z)

(4.4)
l = (p − 3/2), . . . ,−(p + 3/2) p � 3/2

φp,q(z) = (p − q)ψ(z)Vp,q(z)

Ss
p,q(z) = (p − q)(−γ (z))(p−2)−sψ(z)ψ̄(z)Vp,q(z)

s = (p − 2), . . . ,−(p + 2) p � 2.

The dimensions of Sm
p,q(z) and sn

p,q(z) are 2p + 1 and 2p, respectively. On the other
hand both s̃ l

p,q(z) and Ss
p,q(z) have (2p + 1) independent components. Note that φp,q(z) is

one dimensional. So the dimension of a typical representation (where q �= p,−p − 1) is
8p + 4. For an atypical representation corresponding to q = p, Sm

p,q(z) and sn
p,q(z) are the

only non-vanishing fields and so the dimension of the atypical representation is 4p + 1.
By means of the free field representations given in section 3, we compute the OPEs of

affine currents with the primary fields. The OPEs of the osp(2|2) currents with Sm
p,q(z) are

JE(z)Sm
p,q(w) = p − m

z − w
Sm+1

p,q (w)

JF (z)Sm
p,q(w) = p + m

z − w
Sm−1

p,q (w)

JH (z)Sm
p,q(w) = 2m

z − w
Sm

p,q(w)

JH ′(z)Sm
p,q(w) = 2q

z − w
Sm

p,q(w)

je(z)S
m
p,q(w) = 0

jē(z)S
m
p,q(w) = 0

jf (z)Sm
p,q(w) = 1

z − w

(
(m − q)sm−1/2

p,q (w) − s̃m−1/2
p,q (w)

)
m � (p − 1)

jf (z)Sp
p,q(w) = −1

z − w
φp,q(w)

jf̄ (z)Sm
p,q(w) = 1

z − w

(
(p + m)sm−3/2

p,q (w) − s̃m−3/2
p,q (w)

)
.

(4.5)
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When q = p, terms involving φp,q(z) and s̃ l
p,q(z) disappear. The OPEs with sn

p,q(z) are

JE(z)sn
p,q(w) = (p − 3/2) − n

z − w
sn+1
p,q (w)

JF (z)sn
p,q(w) = (p + 1/2) + n

z − w
sn−1
p,q (w)

JH (z)sn
p,q(w) = 2n + 2

z − w
sn
p,q(w)

JH ′(z)sn
p,q(w) = 1 + 2q

z − w
sn
p,q(w)

(4.6)
je(z)s

n
p,q(w) = − 1

z − w
Sn+1/2

p,q (w)

jē(z)s
n
p,q(w) = − 1

z − w
Sn+3/2

p,q (w)

jf (z)sn
p,q(w) = − 1

z − w
Sn−1/2

p,q (w)

jf̄ (z)sn
p,q(w) = − 1

z − w
Sn−3/2

p,q (w).

When q = p, terms containing Ss
p,q(w) disappear. The relations of the currents with s̃ l

p,q(z)

and Ss
p,q(w) are

JE(z)s̃l
p,q(w) = 1

z − w

(
((p − 1/2) − l)s̃l+1

p,q(w) − (p − q)sl+1
p,q(w)

)
l � (p − 5/2)

JE(z)s̃p−3/2
p,q (w) = 1

z − w
φp,q(w)

JF (z)s̃l
p,q(w) = (p + 3/2) + l

z − w
s̃l−1
p,q (w)

JH (z)s̃l
p,q(w) = 2l + 2

z − w
s̃l
p,q(w)

JH ′(z)s̃l
p,q(w) = 1 + 2q

z − w
s̃l
p,q(w)

je(z)s̃
l
p,q(w) = 0

jē(z)s̃
l
p,q(w) = −p − q

z − w
Sl+3/2

p,q (w)

jf (z)s̃l
p,q(w) = (q − 1/2) − l

z − w
S l−1/2

p,q (w)

jf̄ (z)s̃l
p,q(w) = − (p + 3/2) + l

z − w
S l−3/2

p,q (w)

(4.7)

and

JE(z)Ss
p,q(w) = (p − 2) − s

z − w
Ss+1

p,q (w)

JF (z)Ss
p,q(w) = (p + 2) + s

z − w
Ss−1

p,q (w)

JH (z)Ss
p,q(w) = 2s + 4

z − w
Ss

p,q(w)

JH ′(z)Ss
p,q(w) = 2 + 2q

z − w
Ss

p,q(w)



7660 X-M Ding et al

je(z)Ss
p,q(w) = 1

z − w
s̃s+1/2
p,q (w)

jē(z)Ss
p,q(w) = 1

z − w

(
s̃s+3/2
p,q (w) − (p − q)ss+3/2

p,q (w)
)

s � (p − 3)

jē(z)Sp−2
p,q (w) = 1

z − w
φp,q(w)

jf (z)Ss
p,q(w) = 0

jf̄ (z)Ss
p,q(w) = 0.

(4.8)

Finally OPEs involving φp,q(w) read

JE(z)φp,q(w) = · · ·
JF (z)φp,q(w) = 1

z − w

(
(2p + 1)s̃p−3/2

p,q (w) − 2p(p − q)sp−3/2
p,q (w)

)

JH (z)φp,q(w) = 2p + 1

z − w
φp,q(w)

JH ′(z)φp,q(w) = 1 + 2q

z − w
φp,q(w)

je(z)φp,q(w) = p − q

z − w
Sp

p,q(w)

jē(z)φp,q(w) = 0

jf (z)φp,q(w) = 0

jf̄ (z)φp,q(w) = − (p + q) + 1

z − w
Sp−2

p,q (w).

(4.9)

4.2. osp(2|2)(1) primary fields in the non-standard basis

The highest weight state of the algebra is

VJ,q(z) = exp

{
2

α+
(J iφ(z) − qφ′(z))

}
(4.10)

where J, q are given complex numbers specifying the representation. The conformal
dimension of the field is

�J,q = J 2 − q2

k + 1
. (4.11)

If q �= ±J , then �J,q �= 0 and the corresponding representations are typical. When q = ±J ,
atypical representations arise. For the representation to be finite dimensional, it turns out
that J must be an integer or half-integer and moreover if J = 0 then q must also be zero.
For J = 0 = q, the atypical representation is obviously one dimensional. For J �= 0, a
representation labelled by J, q has the following bases:

Nm
J,q(z) = [2J (−γ (z))J−m − q(J − m)(−γ (z))J−m−1ψ(z)ψ̄(z)]VJ,q(z)

m = J, J − 1, . . . ,−(J − 1),−J, J � 1/2

nl
J,q(z) = (J − q)(−γ (z))(J−1/2)−lψ(z)VJ,q(z)

l = (J − 1/2), . . . ,−(J − 1/2) J � 1/2
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n̄l
J,q(z) = (J + q)(−γ (z))(J−1/2)−l ψ̄(z)VJ,q(z)

l = (J − 1/2), . . . ,−(J − 1/2) J � 1/2

N n
J,q(z) = (J 2 − q2)(−γ (z))(J−1)−lψ(z)ψ̄(z)VJ,q(z)

n = (J − 1), . . . ,−(J − 1) J � 1.

(4.12)

It is easy to see that Nm
J,q(z) and N n

J,q(z) have (2J + 1) and (2J − 1) independent
components, respectively, and the dimensions of nl

J,q(z) and n̄l
J,q(z) are both 2J . So the

dimension of a typical representation (where q �= ±J ) is 8J . For an atypical representation,
either only Nm

J,q(z) and nn
J,q(z) survive (when q = −J ) or only Nm

J,q(z) and n̄n
J,q(z) remain

(when q = J ). So the dimension of the atypical representation is 4J + 1.
The OPEs of the osp(2|2) currents with Nm

J,q(z) are

JE(z)Nm
J,q(w) = J − m

z − w
Nm+1

J,q (w)

JF (z)Nm
J,q(w) = J + m

z − w
Nm−1

J,q (w)

JH (z)Nm
J,q(w) = 2m

z − w
Nm

J,q(w)

JH ′(z)Nm
J,q(w) = 2q

z − w
Nm

J,q(w)

je(z)N
m
J,q(w) = −J − m

z − w
n̄

m+1/2
J,q (w)

jē(z)N
m
J,q(w) = −J − m

z − w
n

m+1/2
J,q (w)

jf (z)Nm
J,q(w) = J + m

z − w
n

m−1/2
J,q (w)

jf̄ (z)Nm
J,q(w) = J + m

z − w
n̄

m−1/2
J,q (w).

(4.13)

We see that nl
J,q(z) and n̄l

J,q(z) are generated from Nm
J,q(z) by the action of the fermionic

currents. The OPEs involving nl
J,q(z) are

JE(z)nl
J,q(w) = (J − 1/2) − l

z − w
nl+1

J,q(w)

JF (z)nl
J,q(w) = (J − 1/2) + l

z − w
nl−1

J,q (w)

JH (z)nl
J,q(w) = 2l

z − w
nl

J,q(w)

JH ′(z)nl
J,q(w) = −1 + 2q

z − w
nl

J,q(w)

je(z)n
l
J,q(w) = −1

z − w

(
J − q

2J
N

l+1/2
J,q (w) − (J − 1/2) − l

2J
N l+1/2

J,q (w)

)

jē(z)n
l
J,q(w) = 0

jf (z)nl
J,q(w) = 0

jf̄ (z)nl
J,q(w) = −1

z − w

(
J − q

2J
N

l−1/2
J,q (w) +

(J − 1/2) + l

2J
N l−1/2

J,q (w)

)

(4.14)
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and

JE(z)n̄l
J,q(w) = (J − 1/2) − l

z − w
n̄l+1

J,q(w)

JF (z)n̄l
J,q(w) = (J − 1/2) + l

z − w
n̄l−1

J,q (w)

JH (z)n̄l
J,q(w) = 2l

z − w
n̄l

l,q(w)

JH ′(z)n̄l
J,q(w) = 1 + 2q

z − w
n̄l

J,q(w) (4.15)

je(z)n̄
l
J,q(w) = 0

jē(z)n̄
l
J,q(w) = −1

z − w

(
J + q

2J
N

l+1/2
J,q (w) +

(J − 1/2) − l

2J
N l+1/2

J,q (w)

)

jf (z)n̄l
J,q(w) = −1

z − w

(
J + q

2J
N

l−1/2
J,q (w) − (J − 1/2) + l

2J
N l−1/2

J,q (w)

)

jf̄ (z)n̄l
J,q(w) = 0.

Finally, the OPEs of the currents with N n
J,q(z) are

JE(z)N n
J,q(w) = (J − 1) − n

z − w
N n+1

J,q (w)

JF (z)N n
J,q(w) = (p − 1) + n

z − w
N n−1

J,q (w)

JH (z)N n
J,q(w) = 2n

z − w
N n

J,q(w)

JH ′(z)N n
p,q(w) = 2q

z − w
N n

J,q(w)

je(z)N n
J,q(w) = −J − q

z − w
n̄

n+1/2
J,q (w)

jē(z)N n
J,q(w) = J + q

z − w
n

n+1/2
J,q (w)

jf (z)N n
p,q(w) = J + q

z − w
n

n−1/2
J,q (w)

jf̄ (z)N n
p,q(w) = −J − q

z − w
n̄

n−1/2
J,q (w).

(4.16)

We would like to make a remark on the special case when J = 0, q �= 0. In this case, the
representation with the highest weight state (4.10) is typical. However, this representation is
infinite dimensional, as is seen from the following bases of the representation:

Nm
q,±(z) =

(
γ −m(z) ∓ m

2
γ −m−1(z)ψ(z)ψ̄(z)

)
V0,q (z) m = 0,−1,−2, . . .

nl
q(z) = γ (−l−1/2)(z)ψ(z)V0,q(z) l = −1/2,−3/2, . . .

n̄l
q(z) = γ (−l−1/2)(z)ψ̄(z)V0,q (z) l = −1/2,−3/2, . . .

N n
q (z) = γ (−nJ−1)ψ(z)ψ̄(z)V0,q (z) n = −1,−2, . . . .

(4.17)
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4.3. osp(2|2)(2) primary fields

The highest weight state of the algebra is

VJ,±(z) = exp

{
2

α+
J (iφ(z) ± φ′(z))

}
(4.18)

where J is any given complex number characterizing the representation. The conformal
dimension of the field is

�J,± = 0. (4.19)

So there are no typical representations and all representations are atypical. It turns out that
for the representation to be finite dimensional, J has to be an integer or half-integer. The full
bases of the representation are

T m
J,±(z) = [(−γ (z))J−m ∓ (J − m)(−γ (z))J−m−1ψ(z)ψ ′(z)]VJ,±(z)

m = J, J − 1, . . . ,−(J − 1),−J

t lJ,±(z) = (−γ (z))(J−1/2)−l (ψ(z) ∓ ψ ′(z))VJ,q(z) l = (J − 1/2), . . . ,−(J − 1/2).

(4.20)

T m
J,±(z) and t lJ,±(z) have (2J + 1) and 2J independent components, respectively. So the

dimension of the representation is 4J + 1.
The OPEs of the currents with T m

J,±(z) are

JE(z)T m
J,±(w) = J − m

z − w
T m+1

J,± (w)

JF (z)T m
J,±(w) = J + m

z − w
T m−1

J,± (w)

JH (z)T m
J,±(w) = 2m

z − w
T m

J,±(w)

JH ′(z)T m
J,±(w) = ∓2J

z − w
T m

J,±(w)

je(z)T m
J,±(w) = −J − m

z − w
t
m+1/2
J,q± (w)

je′(z)T m
J,±(w) = ±J − m

z − w
t
m+1/2
J,± (w)

jf (z)T m
J,±(w) = −J + m

z − w
t
m−1/2
J,± (w)

jf ′(z)T m
J,±(w) = ±J + m

z − w
t
m−1/2
J,± (w).

(4.21)

We see that t lJ,±(z) are generated from T m
J,±(z) by the action of the fermionic currents. The

OPEs involving t lJ,±(z) are

JE(z)t lJ,±(w) = (J − 1/2) − l

z − w
tl+1
J,±(w)

JF (z)t lJ,±(w) = (J − 1/2) + l

z − w
tl−1
J,±(w)

JH (z)t lJ,±(w) = 2l

z − w
tll,±(w)

JH ′(z)t lJ,±(w) = ∓1 + 2J

z − w
tlJ,±(w)
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je(z)t
l
J,±(w) = −1

z − w
T l+1/2

J,± (w)

je′(z)t lJ,±(w) = ±1

z − w
T l+1/2

J,± (w)

jf (z)t lJ,±(w) = 1

z − w
T l−1/2

J,± (w)

jf ′(z)t lJ,q(w) = ±1

z − w
T l−1/2

J,± (w).

(4.22)

5. Conclusions

We have studied the conformal field theories associated with the current superalgebras
osp(2|2)(1) and osp(2|2)(2). We construct the free field representations and screen currents of
these two superalgebras at general level k. We also construct the primary fields corresponding
to both typical and atypical representations. Both conformal field theories have vanishing
central charges. In the case of osp(2|2)(1), there exists an infinite family of negative dimensional
primary operators so that the corresponding conformal field theory is non-unitary. For the
case of osp(2|2)(2), the dimension of all primary fields vanishes and so they all correspond
to atypical representations of the current superalgebra. Our results provide a useful algebraic
background in the study of disordered systems using the supersymmetric method, which will
be investigated elsewhere.
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